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A combination vortex-grid method for solving the two-dimensional, incompressible 
Navier-Stokes equations in regions with complicated internal, elastic boundaries is pre- 
sented. The authors believe the method to be applicable to the case of at least moderately 
high Reynolds number flow. The method is applied to the study of blood flow through the 
mammalian mitral valve. Previous work of Peskin is extended and the conjecture that the 
behavior of mammalian heart valves is independent of Reynolds number is supported. 

Contents. I. Introduction. II. Equations of motion. III. Generation of point vortices using the 
boundary forces. IV. The heart and its boundary forces. V. Chorin’s vortex method. VI. The 
timesplitting difference scheme. VII. A brief description of the hybrid method. VIII. The hybrid 
scheme. IX. Results and conclusions. 

1. INTRODUCTION 

The purpose of this work is twofold-to develop a numerical method for studying 
high-Reynolds-number fluid flow in a two-dimensional region with boundaries that 
may move, and to apply this method to the problem of blood flow through heart 
valves. In particular, we wished to check the conjecture that mammalian mitral valces 
behave independently of the Reynolds number: that is, the hearts of different-sized 
mammals behave like scale models of each other despite variations in the Reynolds 
numbers over a range of two orders of magnitude (see Kalmanson [5]). Peskin [8] has 
made a numerical study of blood flow through the mitral valve; however, because of 
the necessity of refining the mesh, his method could not feasibly be used at Reynolds 
numbers as high as those of the human heart. The highest Reynolds numbers he 
could study were about 100 times smaller than those in the range of human physiology. 
Therefore, before undertaking this work, it was necessary to develop a high-Reynolds- 
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number method for solving the incompressible Navier-Stokes equations in the 
presence of moving, immersed elastic boundaries, the motions of which are not known 
in advance. Because the geometry of this problem is very complicated, we needed an 
extremely general method. The best high-Reynolds-number method available for 
incompressible flow is Chorin’s vortex method [I]. This method is grid free and the 
effects of the boundary on the fluid are realized by having the boundary at each 
timestep shed point vortices into the fluid. Each vortex then interacts with all the 
others. Chorin’s method is perfectly suited to exterior problems of flow-past-a-body 
type, because in such cases, the point vortices are swept downstream away from the 
body, whereupon they may be discarded from the calculation. In other types of 
problems, however. the method can be prohibitively expensive because the number 
of vortices grows linearly with time and the number of computations grows 
quadratically. Shestakov [9] has a hybrid method, involving both point vortices and 
a mesh which does not have to be refined as the Reynolds number increases. In 
Shestakov’s method, the fluid domain is divided into two parts: a strip of width 6 in 
the neighborhood of the boundary on which Chorin’s vortex method is used and an 
interior grid on which finite-difference methods are used. The mesh does not have to 
be refined as the Reynolds number increases because the use of vortices in the 
boundary layer provides high resolution there. Shestakov’s method is therefore 
especially well suited to a problem with fixed, flat boundaries. In the heart valve 
problem, the boundary consists of the valve and the heart wall. It is immersed in the 
fluid, exerts forces on it, and moves at local fluid velocity. We idealize the boundary 
and assume it to be thin and massless. Thus, a new treatment, applicable to the case 
of interior, complicated, moving elastic boundaries was necessary. 

The case of elastic boundaries creates an additional problem in the use of any 
vortex method: The creation of vorticity at the boundary now depends on the curl of 
the (singular) field of boundary forces. Since the boundary points move like fluid 
markers and their motion is not known in advance, Chorin’s algorithm (based on the 
slip velocity generated during one time step of the Euler equations) for the creation of 
vorticity cannot be used. Instead, we find that the tangential boundary force acting on 
the fluid for one time step creates a vortex dipole layer along the boundary and that 
the derivative of the normal force creates a simple vortex layer. A preliminary test of 
this approach, in which the boundary forces are used to generate vorticity, appears in 
the work of Mendez [6], who computed the large-amplitude motion of an elastic 
ellipse immersed in an inviscid fluid (Euler equations). 

A new method, described below, which we believe to be good for solving the two- 
dimensional Navier-Stokes equations at high Reynolds number has been developed. 
We emphasize that this method can be used in applications other than blood flow 
through heart valves. The method can be applied to incompressible flow in a two- 
dimensional region with thin, massless boundaries which either do not move at all, 
move in a prescribed manner, or which exert forces on the fluid and move at the local 
fluid velocity. Note, however, that the same equations of fluid must hold on either 
side of the boundary. In the former two cases, the method is somewhat simpler than 
it is in the present example. The only restriction on use of our method is that one must 
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be able to embed the domain of interest in a larger domain for which a fast Laplace 
solver is available (e.g., a periodic box) without doing violance to the physics of the 
prob1em.l Like Shestakov’s method, ours combines point vortices and a mesh. The 
special new features of our method are the generation of point vortices using the 
boundary forces and the fact that the vortices are retained as such only for a fixed 
number of timesteps, after which their vorticity is spread to the mesh. A point vortex 
should be retained for enough timesteps so that it will probably have diffused out of 
the boundary layer before it is spread to the mesh. Because the boundary layer 
becomes thinner as the Reynolds number increases, the required number of timesteps 
does not grow. Preliminary work on our method appears in McCracken and Peskin 
Dll. 

Briefly, our method is as follows: the domain on which the fluid flows is the unit 
square in R2 with periodic boundary conditions. Inside the domain there are moving, 
elastic boundaries which are assumed to be infinitely thin and massless, and which 
exert forces on the fluid. These boundaries consist of the heart walls and valve in the 
case of blood flow. 

We use both a Lagrangian representation of the boundary and an Eulerian repre- 
sentation of the fluid on a computational mesh. The boundary is discretized and the 
positions of the boundary points are stored. The boundary points are not required to 
fall on mesh points. At each timestep the effects of the boundary forces on the fluid 
are realized by having the boundary shed point vortices into the fluid. There are 
several ways to do this: they will be reviewed in Section IV. The positions and strengths 
of the point vortices are stored for a certain fixed number of timesteps, after which 
their vorticity is spread to the mesh and they are discarded as point vortices. The effect 
of this is that the number of point vortices does not grow with time. At any time the 
total vorticity is the sum of the vorticity due to the point vortices and that on the mesh. 

The procedure at each timestep is first to update the boundary forces. Next the 
vorticity of the oldest point vortices is spread to the mesh and new vortices are 
created in their stead, using the boundary forces. The mesh vorticity is then updated 
using a finite-difference form of the vorticity transport equation. The velocity field is 
found by differencing the stream function, which is computed from the total vorticity 
by means of a fast Laplace solver. On a fixed mesh, the number of operations in the 
computation of the velocity by this method grows only linearly with the number of 
vortices. Finally, the boundary points and vortices are moved in the velocity field by 
interpolating the velocity from the mesh. The vortices are also walked one random 
step because of viscous diffusion. 

Note that the vortices affect each other through the mesh, that is, the velocity one 
point vortex produces at another is not computed directly. This is done to save 
computing time. At very high Reynolds number it would be desirable to have a local 
correction to this so that the velocity at a point vortex due to nearby vortices would, 
in effect, be computed directly. 

1 A referee has pointed out that a fast Laplace solver is not strictly necessary, since one can solve 
the stream function equation by iterative methods using the previous time step as an initial guess. 
However, in that case, the method would be slower to execute than it is when a fast solver is used. 
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It should now be pointed out that an objection to our method can be raised exactly 
because we move the vortices through the mesh. This objection as especially well 
put by one of the referees, who said, “Much filtering is going on when the vortices 
and normal forces are spread to the mesh and when the velocities are interpolated 
back onto the vortices and boundaries. Scales of motion smaller than the mesh width, 
h, will not be properly represented by these procedures. These scales are assumed to 
exist, otherwise the hybrid scheme would not be necessary. Even the procedure of 
placing the dipole point vortices on the boundaries a distance h apart is mesh depen- 
dent rather than Re dependent...” As these remarks indicate, the statements in this 
paper concerning the effects of Reynolds number should be read as conjectures and 
not as established facts. Further numerical experiments will be required to determine 
the range of Reynolds numbers that is appropriate for vortex-grid methods (see also 
DOI). 

II. EQUATIONS OF MOTION 

In nondimensional form, the equations of motion for incompressible flow are as 
follows: 

;+u.Vu+Pp=+F, 
(2.1) 

v . u = 0. 

where u is the fluid velocity, p is the pressure, R is the Reynolds number, and F is the 
boundary force. Further, we have 

where X(s, t) is the Lagrangian representation of the boundary, that is, fixed s marks 
a material point and, for fixed t, X(., t) is a parametrization of the boundary. A 
(below) is assumed to be constant in time, so it may be taken to be length of the 
boundary at time t = 0, for example. Finally, 

F(x, t) = [” f(x, t) 6(x - X(s, t)) ds, (2.3) 
Jo 

where 6 is the two-dimensional Dirac a-function and f is the force density, which can 
be computed from the boundary configuration X. Note that since X is a curve, i.e., 
one-dimensional, for each fixed t, and 6 is the two-dimensional S-function, F(x, t) is 
singular. 

Taking the curl of the first equation and letting w2 = V x u, where E is a unit 
vector perpendicular to the plane of the flow, we get, 

+V+u) =++i.(V x F)? (2.4) i 
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which is the vorticity transport equation. In the particular example we are considering, 
we do not have V . (uw) = u . VW everywhere because there is a point source of 
volume in the atrium of the heart (see Section VII). It can be seen from this equation 
that V x F generates vorticity in the fluid. In our case, the support of F is 
the boundary, and we inject vorticity into the boundary layer using a formula derived 
by taking thr curl of the singular boundary forces (see Section III). 

Although the method of this paper is designed for incompressible flow, it can also 
accomodate the situation in which the domain contains sources and sinks so that 
V . u # 0. It follows that V . (uw) cannot be replaced by u . VW. The form V * (uw) 
has certain numerical advantages in any case, as we explain in Section VII. In the 
presence of sources and sinks, the equations that determine the convection velocity u 
become V x u = 04 and V . u = u, where CJ is the (given) source distribution. We 
can write u = u, + u, , where 

v x u, = OJE, v . u, = 0, 
v x u, = 0, v . u, = (5. 

Thus the sources contribute a potential flow which is independent of the distribution 
of vorticity. 

In our application, we have a source in the left atrium and a sink around the edges 
of the domain. The source corresponds to the pulmonary veins, and the sink acco- 
modates the volume displaced by the moving walls of the heart. (The strength of the 
sink is determined by that of the source, since volume is conserved.) A similar techni- 
que was used in Peskin [8], but here we take the strength of the source as constant, 
while in [8] the source was pressure-dependent. It would be difficult to use a pressure- 
dependent source in the present context, since the pressure is not computed. It would 
be very easy, however, to make the source strength a given function of time. 

One always computes the boundary forces from the boundary configuration. This 
is rather complicated in the case of elastic boundaries and will be detailed in Section IV. 
However, if the boundary does not move or moves in a prescribed manner, it is a 
simple matter to compute the forces. In that case, the force at each boundary point 
depends only on that boundary point and not on any of the other ones. Each boundary 
point should be attracted to its equilibrium position, or the position prescribed by the 
boundary motion, with a force depending only on how far the point is from where it 
should be. The force should be sufficiently large to keep the boundary point very close 
to the right place, but not so large as to cause instability.2 

TIT. GENERATION OF VORTICES USING THE BOUNDARY FORCES 

The key to the numerical method presented in this paper is the way in which the 
boundary forces are used to shed point vortices into the fluid, because it is these 

2 In other words, we may take F(x, t) = C i x - x,(t);, where x,(t) is the desired configuration 
of the boundary at time r. 
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vortices which make it possible to study high-Reynolds-number flow without refining 
the mesh. Vortices may be shed in vortex dipole pairs or in dipole pairs together with 
single vortices. 

To understand what a point vortex is, imagine stationary, incompressible flow in 
which w(x) = KS(x - x,,). Recall that there will be a stream function #(x) such that 
if u(x) = (u,(x), uZ(x)) is the velocity field, then a#/ax, = -ur and +!J/c?x, := uZ. 
Hence, we obtain O+(x) = w(x) = K6(x - x,,). Solving this, we aesily see that 

u(x) = 
B x (x - X”)K 
, x - X” i”2k’ (3.1) 

Thus, the velocity field due to a point vortex has circular streamlines and the 
magnitude of the velocity falls off as 11 x - x0 j . The circulation around any simple, 
closed curve is K if x, is in the interior of the curve and zero otherwise. By a vortex 
dipole we shall mean a pair of point vortices with equal but opposite strengths. If the 
positive and negative vortices of the dipole are at points x and y, respectively, then 
(x - y) K is the vortex dipole moment of the pair. 

We now make the argument which shows how point vortices are generated by the 
forces. Below, for convenience we suppress dependence on time. If F is the force, then 

F(x) = j1 f(s) 6(x - X(s)) ds, 
-” 

(3.2) 

so that 

(C x F) . f = 
! 
*A {c x [6(x - X(s)) f(s)]] . 2 ds 

‘0 

E s A T . {6(x - X(s)) f(s) x 2} ds 
0 

J 
A 

xz GS(x - X(s)) * {f(s) x i} ds.3 (3.3) 
0 

Taking the dipole moment of this expression over an arbitrary region R, of fluid, we 
get that it is equal to JRInX (-fi(s),fi(s)) ds. Thus, (-.fi(s),,fi(s)) is the dipole moment 
density along the boundary. It is natural to discretize this as a layer of vortex dipoles. 
Note that they are not necessarily oriented normally to the boundary. Adopting this 
point of view, when the boundary is discretized, at each boundary point, at each 
timestep, a vortex dipole pair as above is shed into the fluid. 

A more refined viewpoint leads to a more natural discretization, and, judging by 
the results, to greater numerical stability. We separate the forces into components 
tangent and normal to the boundary. Let f(s) = f7+c + fvn, where 7 and n are unit 

3 Note that differentiation is with respect to x only. Thus, f(s), X(s), 2 all function as constants. 
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vectors parallel and perpendicular, respectively, to the boundary. Then f(s) x 

2 = f,T - f7n and so, 

(V x F) . 2 = jA {V6(x - X(S))} . fnT ds - I,^ {V6(x - X(S))} . fTn ds. (3.4) 
0 

Consider the first term, 

1 {V6(x - X(s))} fnT ds. (3.5) 

We have that 
JO 

-1 d6(x ~~ wx - X(s)) $s) = ; X@), 

Integrating by parts, we obtain 

- X(s)) ___, where / X’(S)/ 
ds 

: (k’;(s)2 + x;(s)y. 

(3.6) 

CA P&x - X(s)>> ..fn(s> -4s) ds 
JO 

=- s(x ;;;;;)f(r) 1: + joA ; (#) 6(x - X(s)) ds 

= s,^ ; (&j) S(x - X(s)) ds, 

in the case where the boundary is a simple closed curve. The integral has the natural 
interpretation of being a S-layer of vorticity with strength density 

along the boundary. This point of view leads, upon discretization, to having the 
normal forces shed single vortices into the fluid and the tangential forces shed dipoles, 
which would now be oriented normally to the boundary. 

Once the normal and tangential forces have been separated, several variants of the 
method are possible. One can, for example, use the normal forces to create vorticity 
directly on the mesh and use only the tangential forces in the creation of point vortices 
in the form of vortex dipoles. This is what we have done because of our belief that the 
tangential forces have the greater influence on the boundary layer at high Reynolds 
number. The other possibilities are currently being checked in the work in progress 
mentioned in the Introduction. 

IV. THE HEART AND ITS BOUNDARY FORCES 

The setup of the heart and its muscular links is the same here as in Peskin [8]. We, 
therefore, refer the reader to that paper for details is and merely provide a sketch here. 
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Further background on mitral valve dynamics and on related aspects of cardiac 
physiology may be found in [5, 71. 

We wish to study blood flow through the mitral valve, which is the inflow valve of 
the left ventricle. Blood returning from the lungs to the heart enters the left atrium, 
from which it is transferred to the left ventricle across the mitral valve. In order to 
study the flow patterns of the mitral valve, we need to construct a representation of 
the heart which includes at least the left atrium and ventricle. We study only the filling 
cycle, so we do not need the aortic valve. However, we do need the outflow tract 
because its geometry is important in the performance of the mitral valve. The heart 
is constructed from musculat and elastic links, as described below, arranged in the 
two-dimensional geometry as shown in Fig. 1. This arrangement resembles a cross 

FIG. 1. The two-dimensional geometry used in the computation. 

section of the left heart in a plane which bisects the two major leaflets of the mitral 
valve and which also passes through the apex of the heart. The physical quantities 
which set the scale for the fluid dynamics of the human mitral valve are 

Lo = 3.2 cm = diameter of mitral ring, 
T,, = 0.86 set = duration of a heartbeat 
v = 0.04 cm2/sec = viscosity. 

(4.1) 

These can be combined to give the Reynolds number R = L,2/vT,, E 300. It is very 
important to note that this definition of Reynolds number is rather arbitrary. For 
example, it would perhaps be better to take as the characteristic time the duration of 
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the rapid filling phase of diastole which is about T,/4, which results in a Reynolds 
number of 1200 for the human heart (a more standard figure). Any such definition 
will work, and different choices of the reference length and of the reference time will 
simply result in a different (but equivalent) system of nondimensional variables. 

It seems reasonable to treat the valve leaflet and heart wall as immersed boundaries 
in the fluid because these parts of the heart are, in fact, incompressible and neutrally 
buoyant in blood. Because most of the action takes place inside the heart, the require- 
ment that the heart be embedded in a periodic box should not interfere with valve 
performance. 

We now briefly describe how the boundary forces are derived from the boundary 
configuration. The boundary is discretized into finitely many points (X,JE$. The 
force density at each point XI, is a function f,(X, ,..., X,). We now restrict the form of 
these functions by assuming that the forces arise in straight-line segments (links) 
connecting specified pairs of boundary points. Suppose that link t?j connects Xj and 
X, , and let 

xj, = xj - Xk ) 

-4, = I Xik I , (4.2) 
Tjk(Ljk) = tension in link jk; 

then 

In the present calculation, each link has a length tension relation 

Tik(Lik) = CLjk - J%c) sjk > Lj, > Lj4, 5 

= 0, Ljk d LTk P 

where Sj, is the stiffness and L& the resting length. 
It should be emphasized that the heart valve problem is very sensitive to the treat- 

ment of the boundary. Thus, in updating the forces, an implicit scheme must be used 
for numerical stability. In the process, an equation of the form 

x: = x, + hf,(X,*,..., x;) (4.5) 

must be solved. The derivation of this equation and its solution by Newton’s method 
are discussed in Peskin [8]. It is proved there that the matrix which arises in this 
application of Newton’s method is symmetric and positive definitive whenever the 
tension in each link satisfies T(L) > 0, T'(L) > 0. 

V. CHORIN'S VORTEX METHOD 

The numerical method for solving the Navier-Stokes equations that we present in 
this paper is a hybrid of Chorin’s vortex method [l], which uses modified point 
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vortices only, and a finite-difference method using a mesh. In the following two 
sections we briefly describe both methods. For the sake of simplicity, we describe 
them in the case where there are no boundaries and no external forces. 

To solve an initial value problem by Chorin’s vortex method, one first divides the 
region up into boxes and places a point vortex at the center of each box. The strength 
Kj of the jth vortex should be the integral of w”, the initial vorticity, over the box. 
Once this is done, we forget all about the boxes. The vortices move according to 
convection and diffusion. The velocity due to Chorin’s vortices is the same as that 
given in Section III except that it is modified to smooth out the singularity at the 
vortex. Thus the velocity uk generated by the kth vortex is defined to be 

Uk,(X) = 
2 x (x - xk) Kk 

27r 1 x - X{; I2 - if Ix-xxkI >r/ 

(5.1) 
_. f x (x - 4 KI, - 

277 j x - xk j d- 
if / x - xk I < cl. 

Note that the speed is constant inside the circle of radius d about xk . The use of this 
particular smoothing is motivated by considerations involving the no-slip condition 
in the bounded case. Although these considerations are inapplicable in our problem, 
some smoothing is necessary. This smoothing is automatically accomplished in our 
hybrid method because the vortices are moved through the mesh (see Section VII). 
Chorin’s algorithm for moving the vortices at each timestep dt is 

$+I = Xjn + At C Ukn(Xj) + ?j", 
Icfj 

(5.2) 

where the superscript IZ refers to the nth timestep, and ukn is the velocity field induced 
by the kth vortex at the nth timestep. The last term, nj”, is a random step, representing 
diffusion. The QV’S are independent, Gaussian random variables with expectation 
equal to zero and variance equal to At/R. The scheme can be modified to handle the 
case of bounded domains. if one leaves out the random walk, the scheme can be used 
to solve Euler’s equations and it is known to converge (see Dushane [2] and Hald [4]). 

VI. THE TIMESPLITTING DIFFERENCE SCHEME 

The finite-difference part of our numerical method is based on a timesplitting dif- 
ference scheme. This scheme is very similar to the scheme used by Shestakov [9]; the 
two schemes differ only in their treatment of the inertial terms in the Navier-Stokes 
equations. Let the domain be periodic and have no internal boundaries. For the 
purposes of this section, assume the force F is given. The equations may be written 
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i!E+v.(uw) =+Aw+V x F, 

04 = w, 

a* 
%=-ax,, 

a* 
uz=z. 

1 

(6.1) 

Let D*, and D;, be the forward and backward divided difference operators in x1 
and x2 , respectively, e.g., 

where h is the mesh width and ij refers to the mesh point at (ih, jh). Let D,, and D,, be 
the centered divided differences, e.g., 

Do, = & (D,, + D-I), (6.3) 

and lastly let Cu be the discrete curl, 

(Cu),, = D,,u, - D,,u, . (6.4) 

In the timesplitting scheme an intermediate vorticity field is calculated. The scheme is 

1 
+ x D+2D--2wTL + CFn-+l 

1 
, (6.5) 

Wn+l - At ‘,,“+1/2 = _ 
2 ( 

-D,&,nw n+l/z) - D,,c&‘Wfl) + f D,,D-,wn+li2 

+ f D+1D-2~n+1 + CF”+$ (6.6) 

@‘:I i Di2) I)“-~ = Wn+l, 

-D,,z,Y+~ = u;+l, (6.7) 

D,,lt,bn+l = u,n+‘. 

Note that in (6.5) the x1 differencing is implicit and the x2 differencing explicit and that 
this is reversed in (6.6). 

In Shestakov [9] the scheme used to solve the vorticity transport equation is similar 
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to (6.5)-(6.6) except that Shestakov uses -u~“&(w~’ lj2) instead of -&(u~~~w~-~ 112) 
and similarly for all the other nonlinear terms. Our scheme differs in this respect for 
two reasons. First, because of the point source of volume in the heart we do not have 
V . (uw) = u . VW everywhere. Second, we need zi,j u$&~~+, = 0 for p, q t (0, 1) 
because of periodicity (see below). Conservative differencing preserves this property, 
as we shall see. There is one other difference between the two schemes. Shestakov 
uses the Laplacian DqlD-, + Dq,D-, in the equation for the stream function #. A 
possible advantage in our use of 05 + Di2 to represent the Laplacian is that we then 
have exactly w = Cu. 

There is no known convergence proof for either version of this timesplitting 
scheme; however, in the case of linear, constant coefficients, that is, in the case where 
u is a known constant vector, both versions of (6.5)-(6.6) converge. To find &Ii l one 
solves tridiagonal matrix systems, which can be done efficiently by factorization. 
Details of the preceding assertions may be found in Shestakov [9]. 

After un+l has been found, 4 1Z ~ l can be found by using the fast Laplace solver of 
[3]. Note that, for a square mesh when the number of mesh points is even, solving 
(D$ + D&) # = w is equivalent to solving (D,,D-, + D+,D-,) I/ = w on the four 
meshes M,, = ((p + 21), (q + 2j)ji,; , where p, q E (0, I}. Because of periodicity, 
the range of (D& f Dt,) is the space of all mesh functions w which satisfy 
z(i,j)EM,wij = 0 for each p, q. We now show that our version of the timesplitting 
scheme preserves this property with increasing n. Consider 

At 

First note that x(i,j)EM,s CFyt-’ = 0 because 

(6.8) 

and because of the periodicity. We let S& = C(i,j)EMPO wij and sum (6.8) over A4,, and 
obtain 

S n+1!2 
07 - & (2s&+‘12 - 2&71’2) = S,“, + +& (2S,“, - 2S,“,) (6.10) 

and summing over the other three Mpg’s, we obtain three other, similar equations. 
Letting fl = At/Rh2, Sn = (S,n,, S,” , S& , S,“,), and A(p) denote the matrix 
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we can write our four equations in block matrix form as 

A@) PI 

0 (1 - /!?))I 1 s”. (6.12) 

By an analogous procedure, we obtain 

[ 
(1 + fw -81 

-/3z (1 + /3)Z P-l 1 
so that letting 

,% = IALP) A$,] and 

we have 

[ 
AC--P) 0 

0 
A(--8) sn-t1/‘L, 1 (6.13) 

gg 
[ 
(1 + /w -P B = 1 -PI (1 -t P)Z 

S n+1 
= ~~l&&d~l~ -4 S". (6.15) 

However, since it is clear that a+ commutes with 59_, and s$, LZ?-~ also commutes 
with their inverses, so that we see 

Now, it is easily seen that 

and hence that 

AC--P) A-W = (6.17) 

[ 
z 2181 

2/3z z 1 * (6.18) 

Multiplying the matrices together, we obtain that 

where 

It is then easily seen that 

where 

(6.19) 

(6.20) 

(6.21) 
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Thus, our version of the timesplitting scheme preserves x:(i,j)EMgp tiij = 0 in an un- 
conditionally stable manner. 

VII. A BRIEF DESCRIPTION OF THE HYBRID SCHEME 

To understand how the hybrid scheme works, one should think of the Navier- 
Stokes equations as they are written in (6. l), that is, in vorticity formulation. The key 
to this scheme is the dual treatment of vorticity. We have a vorticity field on the mesh 
and we have point vortices which are generated from the tangential components of the 
boundary forces as described in Section III. The point vortices are retained as point 
vortices for a specified number of timesteps, after which their vorticity is spread to 
the mesh and they are dropped from the calculation. 

We now give a brief overview of the hybrid scheme, which will be detailed in the 
next section. At each timestep, the forces are updated, the oldest vortices are spread 
to the mesh and new ones are created in their place using the updated tangential 
forces. Then the normal forces are spread to the mesh and their discrete curl is taken. 
Next the mesh vorticity is updated using (6.5)-(6.6), which involve the curl of the 
normal forces, and the total velocity, which will be described below. We spread the 
vorticity of the point vortices to the mesh, obtaining the total vorticity field wii + 
Gij, where wij is the mesh vorticity and bij is the field due to the point vortices. The 
stream function # ought to satisfy 

dy5=w+ij (7.1) 

so we discretize this and solve 

(0% * 0,2,) tpfl = Wna1 T 3 (7.2) 

using the fast Laplace solver on the four meshes as described in Section VI. Note that 
we need to know that z(i,j)EMg n wij n-1 = 0. This is, in fact, true because of our method 
of spreading vorticity to the mesh and it will be proved below. The streamfunction 
+!Pl is differenced as in (6.7) to obtain a velocity field U. Recall that in this particular 
example we are studying the filling cycle of the heart. We therefore need a source of 
volume to represent blood returning from the lungs. The velocity of a point source of 
constant strength is thus added to u to obtain u li +l, the total velocity. The velocity of, 
the point source is curl free so that Ctr” t1 = wil :~l = w”+l + i;, is still true; however, 
the velocity is not divergence free at the source itself. As our final step, we move the 
boundary points and point vortices by interpolating u n+l to each of those points. The 
vortices are also walked one random step because of diffusion. 

We now describe how the spreading of vorticity and force and the interpolation of 
velocity are accomplished. Let x1< == (.+ , x2?;) be the location of a point vortex 
(with strength KJ or of a boundary point and let the mesh points be located at 
{(ih,,jh) 0 < i,.j < l/h]. Then the vorticity field due to the point vortices satisfies 

d(.x, ) x,) == c K,@,, - ih) 6(x,, - jh), (7.3) 
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where we have changed notation somewhat and 6 is the one-dimensional Dirac 
S-function. The boundary force and the velocity satisfy the equations 

and 

Fh 3 x2) = I L f(s) %x1 - x,(s)) %x, - x,(s)) ds (7.4) 
0 

11 

4x1 9 x2) = IS U(Y, > YJ Q, - Y,) &xz - YJ dy, dy, . (7.5) 
0 0 

We discretize (7.3)-(7.5) as follows. 

Uk = h2 1 Uijd(Xlk - ih) d(XZk - jh), 
i,i 

where 

44 = & (1 + cos (%jj, I x I < 3, 

(7.6) 

(7.7) 

(7.8) 

This approximation to the one-dimensional Dirac S-function was introduced in 
Peskin [8]. Its many useful properties are discussed in that paper. Here we shall only 
need the following. 

c hd(x - (l2j + 1)h) = c M(x - 2jh) = 4. (7.10) 
j j 

Using (7.6) we see that 

=o (7.11) 

because the vortices are created in dipole pairs of equal and poposite strength. This 
shows that C falls in the range of our discrete Laplace operator on the periodic domain 
as required for the existence of the stream function. 



198 MC CRACKEN AND PESKIN 

VIII. THE HYBRID SCHEME 

We now detail the specifics of our hybrid scheme. Before doing so, we introduce 
some notation. Below. Xk is the location of a boundary point, Yk that of a point 
vortex with strength Kk . There are N of the former and 2NL of the latter, where L is 
the number of timesteps for which vortices are retained. We have a pointer P, which 
is the index of the first of the oldest vortices. fi, will be the boundary force density and 
we have fk = (fT)k ~k-~(fn)k nk , where r and n are unit vectors parallel and perpen- 
dicular to the boundary, respectively. Letting g, =,f,k~12 , we also define the quantity 
C, such that Ckn, = (-g,,, , g,,,). Note that we assume that the tangent and normal 
directions for our discretized boundary have already been defined. 

The mesh quantities are Uij , the velocity; wij , the mesh vorticity; #cj , the stream 
function; and Fij, the normal force. We also have a point source of strength Q, 
located at the point (a, b). Finally, superscript n indicates the nth timestep. A variable 

FIGS. 2-13. Frames from a run at $6 the Reynolds number of the human heart. 

FIGS 2-5. The opening of the valve. 
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with no superscript is an intermediate variable. The mesh width is h and the timestep 
At. 

The hybrid scheme is as follows. To find the forces, solve by Newton’s method the 
nonlinear fixed-point problem 

Xk = [X,” + AtukTL] + Af,(X, ,..., XN)4 (8.1) 

and evaluate the forces 

6 

“‘9 &d. (8.2) 

FIGS. 2-13-Continued 

FIG. 6. Vortices form at the tips of the valve leaflets. 
FIG. 7. The valve drifts toward closure under the influence of the vortices. 

FIG. 8. The valve drifts toward closure. 
FIG. 9. Atria1 systole: the atrium contracts, opening the valve to squeeze out the last jet of blood. 

4 A complete discussion of this equation is given in Peskin [8]. One may choose X freely. It should 
be chosen to produce numerical stability. 
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Spread the oldest vortices to the mesh, 

and create new vortices at the locations 

Yzj = Xi” - hn, , for ‘+ ’ 
2 

<j< p-1 LJj,r 21, 

(8.3) 

P-4) 

FIGS. 2-13-Continued 

FIG. 11. Ventricular systole: the valve starts to close. 
FIG. 13. The valve closes. 
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with the following strengths determined by the tangential forces: 

c. At 
&j-l = -2?i;iv-, 

--c. At 
Kzj = * , p+1 

2 <.jG v + N. 

Spread the normal forces to the mesh, 

Fz?l = $ 5 (j& n&(X,,, - ih) d(X,,, - jh). 
k=l 

(8.5) 

63.6) 

Update the mesh vorticity using the timesplitting method 

,n+vz - 0” = ot 
2 [ --Dd%“W > 

1 
n+1/2 - Doz(u2~~“) + - D+lD~,w”+‘~z 

R 

+ f D+2D-,w*+l~2 + CF”-‘1, (8.7) 

m”+l - oyl- At 

2 --Dodu,Q~ n+112) - D02(~Zn~“+1) + f D+1D-lwn+~~2 

+ f D+2D-2~n+1 - CFafl]. 

Find the stream function, 

2LN 

((Di, + &f2) f% = 47 + c W(~l,k - il.4 4x2,, - jh), 
k=l 

and the new velocity field, 

u1 = -D,,2~n+1, 

u, = D,,@+l; 

s,,- Q 

(3 

(ih--aa,jh--b) 

277 (ih - ~2)~ + (jh - b)2 ’ 

IIn+ = n + s. 

Evaluate the velocity at the boundary points, 

n+1 
uk = h2 1 uE’ld((xl,k - ih) d(x2,, - jh), 

a’,j 

and move the boundary points, 

n+1 Xk = xk” + At U;+l. 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

(8.13) 
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Similarly, evaluate the velocity field at the vortices, 

n+1 
Ul = h2 c u;'ld( Yl,l - ih) d( Y2,1 - jh), (8.14) 

i.1 

and move the vortices, 
?LSl Y, = Yin f At IIF” + 7$“, (8.15) 

where nln are independent, Gaussian random variable with mean zero and variance 
A t/R. 

IX. RESULTS AND CONCLUSIONS 

To study the flow patterns of the mitral valve, we use a square, 64 by 64 grid. The 
heart has about 300 boundary points. The filling part of the cardiac cycle takes about 

. . . . . . . . . ..,: 
::::i;:: : 

,:::::f::::, .: : 
. . . . . . . . . . . . . . . . . ~ 

%yyA :: 

::. :::::::;:::::;:‘ ::: 
. ..“.::::::::::‘.. a;:: 
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FIGS. 14-19. Frames at different Reynolds numbers. 

FIGS. 14A, 15A. One-half the Reynolds number of the human heart. 
FIGS. 14B, 15B. The Reynolds number of the human heart. 
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600 timesteps. In the present work, vortices are retained for five time steps, the time 
step is 0.00035 and the source strength is 8. Our program uses 136,000, words of core 
and about 2 hr CPU time to run on a CDC 6600. The output is in the form of plots. 
In Figs. 2-13, we have selected frames from a run at 0.1 times the Reynolds number 
of the human heart. Unfortunately, because of the very large forces generated at the 
boundary during ventricular systole, we are unable to complete the runs that we have 
made at higher Reynolds numbers. The boundary becomes unstable during ventricular 
systole, which is the event that terminates the filling cycle of the valve. We are working 
to eliminate this problem, Figures 14A-19A and 14B-19B show, respectively, frames 
from runs at 4 the Reynolds number of the human heart and at the actual Reynolds 
number of the human heart. These frames are from the same stages in the cardiac 
cycle as those in Figs. 2-7. One can easily see that our method supports the conclusion 
that the natural mitral valve behaves independently of Reynolds number. This may 

FIGS. 14-19-Continued 

FIGS. 16A. 17A. One-half the Reynolds number of the human heart (contnued). 
FIGS. 168, 17B. The Reynolds number of the human heart (continued). 
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not be true of artificial valves and should be checked, since the Reynolds number 
changes under clinically relevant conditions such as anemia (which gives low vis- 
cosity and high cardiac output). 

For the Reynolds numbers used in Peskin [S] our results agree with his. Since his 
agree well with experiments, this supports the conclusion that our method is a good 
one. We do not yet know, however, whether the method will work as well on problems 
in which the solution has a strong dependence on the Reynolds number. This point is 
being checked now. We believe that our method is a good candidate for solving the 
incompressible Navier-Stokes equations in two dimensions at moderately high 
Reynolds numbers in the case of interior flows with complicated, moving boundaries 
whose motion is not known in advance. The work of computation does not increase 
with Reynolds number because the mesh does not have to be refined and the number 
of vortices does not need to increase. However, at very high Reynolds numbers, it 

.‘,‘.” ,.,._ .._... 

IgB:;, .‘: .::i. ._, 

FIGS. 18A, 19A. One-half the Reynolds number of the human heart (continued). 
FIGS. 18B, 19B. The Reynolds number of the human heart (continued). 
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would probably be best to introduce a local correction to the velocity field to make up 
for the smoothing effects of the mesh. This would, of course, increase the work of 
computation. 

Finally, we remark that it would obviously be desirable to do a three-dimensional 
study of valve motion. Until recently, this could not be contemplated because of the 
lack of an appropriate high-Reynolds-number method. However, Buneman et al. [IO] 
are developing a method which we may be able to use on this problem sometime in 
the future. 
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